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ABSTRACT

To sustain emerging data-intensive scientific applications,
High Performance Computing (HPC) centers invest a no-
table fraction of their operating budget on a specialized fast
storage system, scratch space, which is designed for storing
the data of currently running and soon-to-run HPC jobs.
Instead, it is often used as a standard file system, wherein
users arbitrarily store their data, without any consideration
to the center’s overall performance. To remedy this, centers
periodically scan the scratch in an attempt to purge tran-
sient and stale data. This practice of supporting a cache
workload using a file system and disjoint tools for staging
and purging results in suboptimal use of the scratch space.

In this paper, we address the above issues by proposing a
new perspective, where the HPC scratch space is treated as
a cache, and data population, retention, and eviction tools
are integrated with scratch management. In our approach,
data is moved to the scratch space only when it needed, and
unneeded data is removed as soon as possible. We also de-
sign a new job-workflow-aware caching policy that leverages
user-supplied hints for managing the cache. Our evaluation
using three-year job logs from the Jaguar supercomputer,
shows that compared to the widely-used purge approach,
workflow-aware caching optimizes scratch utilization by re-
ducing the average amount of data read by 9.3%, and by
reducing job scheduling delays associated with data staging,
on average, by 282.0%.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]; C.4 [PERFORMANCE
OF SYSTEMS]: Reliability, availability, and serviceabil-
ity; D.4.2 [Storage Management]: Allocation/deallocation
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1. INTRODUCTION
The scratch file system in an High-Performance Com-

puting (HPC) center provides fast temporary local storage
space for jobs, often consuming a notable fraction of the
center’s operations budget. Scratch storage is intended for
very large—typically on the order of terabytes—input, out-
put, and intermediate data of currently running and soon-
to-run user jobs. This storage is usually served via a par-
allel file system (PFS) that supports very high aggregate
I/O throughput, e.g., Lustre [10], PVFS [9], and GPFS [23].
Consequently, to ensure efficient data I/O and to support
improved job turnaround times, supercomputing application
programmers are encouraged to utilize the scratch space.

The scratch space, however, impacts the HPC center’s ser-
viceability and necessitates proper provisioning to accommo-
date the storage demands of all incoming jobs. Unlike the
user “home” file system that is meant for application devel-
opment, the scratch is seldom regulated with quotas to avoid
introducing any ceilings on the applications’ data sizes. The
input datasets are brought in from remote data sources, and
the result files are offloaded to end-user and other off-center
destinations. Consequently, the scratch storage is designed
to be a staging ground for transient datasets that are usu-
ally not held beyond the lifetime of a job run. However, due
to the lack of sophisticated “end-user data services”–timely
staging of input data and offloading of result output data–
HPC centers often resort to “purge” mechanisms that sweep
the scratch space to remove files found to be no longer in
use, based on not having been accessed in a pre-selected time
threshold called purge window that commonly ranges from
a few days to a week. The purge window depends on the
load, total scratch size, and required level of serviceability.

The scratch space is not intended to be used as a generic
file system for persistent user files storage. Instead, it is a
special-purpose storage for needed (“hot”) data of running
and waiting jobs. Nonetheless, in practice, the scratch space
is utilized as a traditional file system, with the purge policy
added as an afterthought to delete unneeded (“cold”) data of
finished jobs and to cap the scratch utilization within limits.
Such an approach has several disadvantages. First, it wastes
scratch space by allowing users to stage input data much
earlier than job commencement and offload results much
later than job completion. This leads to sub-optimal use of
scratch space, which should be used for new incoming jobs.
By extension, this impacts the HPC center’s serviceability.
Second, it renders the input and output data vulnerable to
scratch storage system failure during the extra wait time,
which can increase job turnaround time.



The lack of elegant scratch space management is having
a profound impact on HPC centers. Users arbitrarily stage
and offload data as and when they deem fit, without any
consideration to the center performance. Few solutions that
are available in this landscape (e.g., the purge mechanism)
are disjoint with user job workflow, and thus are not effi-
cient. Further, users can easily trick the purging system
into not deleting their datasets by periodically “touching”
the datasets, and essentially rendering the purge ineffective.
There do exist workflow-aware data transfer approaches [18,
19], however, these support standalone operation only, and
lack tight integration with scratch management. Thus, there
is an urgent need for a coherent scratch space management
solution. Such an approach can be very timely when it comes
to HPC acquisition proposals. Multi-million dollar HPC ac-
quisition proposals are won based on the FLOPS provided.
Every dollar spent on provisioning the scratch space is a dol-
lar taken away from buying FLOPS. Efficient management
can transform the productivity of even an under-provisioned
scratch storage system.

To address these issues, we present a fresh perspective
to scratch storage management by fundamentally rethink-
ing the manner in which scratch space is employed. Our
approach is to re-design the scratch system as a “cache” and
build “retention” and “eviction” policies that are tightly in-
tegrated from the start, rather than being add-on tools. We
have built cache retention and eviction policies using “hints”
from the user’s job submission script in order to accurately
capture the data needs of a job workflow. These hints in-
clude information about job input, output, and intermedi-
ate files, their usage duration and the dependencies of other
pieces of the workflow on these datasets. Such a strategy
allows us to couple job scheduling with cache management,
thereby bridging the gap between system software tools and
scratch storage management. It enables the retention of only
the relevant data for the duration it is needed. Redesign-
ing the scratch as a cache captures the current HPC usage
pattern more accurately, and better equips the scratch stor-
age system to serve the growing datasets of workloads. This
is a fundamental paradigm shift in the way scratch space
has been managed in HPC centers, and outweighs providing
simple purge tools atop a file system and using that to serve
a caching workload.

While staging and offloading have been examined in iso-
lation previously, existing works [19, 18] lack a holistic ap-
proach to scratch management, and only address automatic
data movement alongside computation on a per job basis.
In contrast, we provide center-wide global optimizations by
deriving hints from every job workflow.

Our evaluation using simulations driven by logs collected
over a period of three years at the Jaguar supercomputer
(No. 2 in Top500), shows that compared to the purging ap-
proach, workflow-aware caching reduces average scratch uti-
lization per hour by 6.6% compared to LRU based caching,
reduces the average amount of data read by 9.3%, and pro-
vides, on average, 282.0% reduction in job scheduling delays
associated with data staging.

2. RETHINKING “HOT” AND “COLD”

CONTENTS
Managing scratch as a cache entails rethinking the tra-

ditional classification of cache contents as “hot” and “cold”.

Typically, the most recently used (MRU) dataset is consid-
ered hot and retained in the cache as it is likely to be ac-
cessed again. Conversely, the dataset that is least recently
used (LRU) is considered cold, and is evicted from the cache.
However, this classification does not always apply to scratch
space contents. Below, we highlight some common scenarios
and discuss hot and cold in the context of “scratch as cache”.

An input dataset consumed by a job that has com-
pleted. Even though the dataset was recently used, it is
unlikely that it will be reused by any other job on the su-
percomputer. In fact, most HPC jobs consume their input
data during the initial phase of the run and do not reuse it
again. These most recently used datasets are thus cold and
can be evicted.

A dataset that was recently staged into scratch in
anticipation of a job run. This is an MRU dataset that is
hot and cannot be evicted as the associated job has not even
started. However, if the job run is delayed, under traditional
scratch operations, the user will need to explicitly touch the
dataset periodically to avoid purging. In modern (crowded)
HPC centers, long job wait times are the norm.

A dataset that the user simply “touches” to per-
sistently avoid purging and trick the system. These
MRU datasets may be cold and can be evicted if no jobs
use them as input. Traditional scratch operations cannot
identify, and catch this scenario.

Result and intermediate datasets that were recently
produced. These MRU datasets can be evicted from the
scratch space, as long as they are not input to other co-
dependent jobs in the workflow.

An input dataset that is cold due to prolonged job
wait and the user has not been renewing it via re-
touching. This is an LRU dataset that is hot and should
not be evicted. To begin with, this input dataset should
only have been brought into scratch storage to coincide job
startup.

This shows that access recency or frequency are not the
only reasons driving scratch management. The aforemen-
tioned scenarios require information from the job workflow
to identify truly hot and cold contents. Note that traditional
scratch management cannot even capture these usage sce-
narios.

2.1 Goals
In light of the above discussion, we foresee several ob-

jectives for a system that manages the HPC center scratch
storage as an advanced cache. Namely:

• Optimize scratch space consumption. From a
center standpoint, it is desirable to stage the data of
a waiting job as late as possible so that the precious
scratch space is available for all of the currently run-
ning jobs’ I/O (e.g., checkpointing and output). Re-
ducing the waiting jobs’ duration of scratch usage will
enable the center to service the currently running jobs
better.

• Reduce exposure window. Another downside of
staging the data early is the prolonged exposure of
staged data to potential storage system failure. We
refer to the time elapsed between when data is staged
until the job starts running as exposure window, Ew.
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Figure 1: (a) Traditional approach to scratch usage is a set of disjoint tools, performing un-coordinated data
movement, job submission, and scratch purging. (b) Scratch as a cache operates the scratch using specific
cache operations that are driven using hints from the job workflow.

To protect against storage failures, it is desirable to
reduce Ew, preferably as close to 0 as possible.

• Reduce job stall time. The previous goals support
delaying staging of input data to the scratch, however,
such delay can result in jobs being stalled and pos-
sibly rescheduled—a costly process–, as they wait for
the necessary input data to become available. Thus,
management of scratch as a cache also requires utiliz-
ing techniques such as intelligent prefetching to timely
stage job input data.

3. SCRATCH AS A CACHE
The key idea behind our approach is to view the HPC

scratch storage as a cache. To this end, we need to support
three basic cache operations namely, “populating” the cache,
“retaining” appropriate datasets in the cache, and “evicting”
datasets from the cache. The premise is that if these oper-
ations are integrated with the storage system, and are the
basis for its functioning, then scratch space usage can be fun-
damentally optimized. The problem, as mentioned earlier,
with the way scratch storage is currently managed in HPC
centers is that the data purge operations are added as an
afterthought and are not workflow-aware and lack tight in-
tegration with scratch management: Data is staged to/from
the scratch in an out-of-band way, and purging is the only
means to ensure space availability.

The purge mechanism performs an LRU-like eviction based
on a temporal window, deleting datasets that have not been
accessed for the last ‘n’ days [2]. However, this approach
is unable to capture many of the discussed scratch usage
scenarios. This is because the HPC job workflow and the
legacy of the user job submission process imposes new re-
quirements on the scratch, which cannot be satisfied by a
purge policy alone. Troublesome scenarios include when
users stage in data way in advance, or offload result data
much later, as well as user behavior (touching files) to mit-
igate the effects of un-coordinated job submission process.

Figure 1(a) presents an overview of how scratch space is
used currently in HPC centers, using a set of disjoint tools
(out-of-band data movement, job submission, and purging)
with no coordination between one another. Moreover, the
figure depicts a number of individual operations manually
performed by the user on the scratch storage. The prob-
lem is only compounded with ever increasing users, each
performing such disconcerted operations. In crowded HPC
centers, where scratch space is precious, streamlining usage
by way of treating the scratch as a cache can improve ser-
viceability. On one end, using this approach, even modestly
provisioned scratch storage systems can be tuned to perform
optimally. At the other end, leadership-class facilities that
boasts several hundred terabytes of scratch space can also
benefit from sophisticated scratch storage management, as
modern petascale applications at such centers consume ever
more data.

3.1 Cache Management Overview
Figure 1(b) presents an overview of scratch as a cache.

In this approach, direct user managed operations on the
scratch storage is avoided and the scratch is strictly man-
aged using cache management tools. User submitted jobs
are translated into a series of cache operations, in addition
to the computation itself, which are then used to operate
the scratch storage. We manage the scratch cache by ensur-
ing that all staging and offloading of job data is performed
using cache population and eviction tools. In this model,
users do not arbitrarily move data in and out. Job input
and output data are not retained beyond the lifetime of the
application run, unless otherwise specified. Populating the
cache with job input data is accomplished using just-in-time
staging tools so that it coincides with job startup. This en-
sures that the input data is not moved into the scratch space
too much in advance, occupying space and increasing the ex-
posure window (Ew). Only data that is needed immediately
is retained in the cache. Cache eviction involves offloading
result files immediately after the computation has finished.



Thus the output data of a job is not held in the scratch cache
beyond the lifetime of the job run. Consequently, the cache
is strictly used for hot job data. Cold data, even though
only recently produced (output), is moved out of the cache.

Compared to the traditional way of scratch usage (Fig-
ure 1(a)), the cache approach significantly reduces the di-
rect user interaction with scratch storage. Each user’s job
is now streamlined into a well coordinated set of operations
that are performed by the center as and when it is optimal
to do so rather than disjoint activities. This significantly
optimizes scratch space usage and makes it more available
for running or soon-to-run jobs. An additional advantage
is that we can now perform globally optimal decisions that
improve the HPC center performance at large.

The logical extension to the “scratch as cache” paradigm
is to view the scratch as one of the levels (Tier 1) within
a multi-level storage for the HPC center. The next level,
Tier 2, can be more broadly defined as a variety of poten-
tial sources and destinations for the job datasets, including
center-wide storage [5, 1], archives [11] at the center, user-
specified nearby storage [22, 19], or end-user location. Data
is moved into and out of Tier 1 from/to Tier 2 storage using
cache management tools.

4. WORKFLOW-DRIVEN CACHING
From the above discussion, it is evident that in order to

manage and operate the scratch as a cache we need guide-
lines and “hints” from the user’s job workflow. The job
workflow can provide details such as input, output, and in-
termediate files, their sources and destinations, the transfer
protocols to be used, and more importantly crucial data de-
pendencies. For instance, the workflow can be used to garner
information such as whether the output of one task is input
to another. Such a dependency can be used to determine
if a given output dataset should be retained in the cache.
Workflow-specific hints enable retention of datasets only for
the duration they are needed. Current scratch operations
are significantly stymied by the lack of such coordination
between user workflows and scratch storage management,
which results in un-coordinated data movement, wastage of
scratch space and, potentially, increased job turnaround and
a negative impact on HPC center serviceability. Workflow-
driven cache management can remedy such issues and im-
prove serviceability.

4.1 Collecting Information from the Job Script
HPC users normally specify their resource requirements

and data movement in a job script and submit it to the job
scheduler at the center. The resource manager at the cen-
ter deciphers these requirements, allocates resources, and
executes the data movement and computation commands.
Therefore, the job script is a logical place to specify hints
that can aid in cache management. If we can instrument the
job script with guidelines regarding which input datasets of
the job to populate the cache with, which ones to evict, and
which ones to retain and for how long, then the cache man-
agement infrastructure could use this information to make
global decisions across all jobs.

4.1.1 Instrumenting the Job Script

To support cache management, we have instrumented the
PBS [20] job scripting system with cache-specific directives.
Users can prefix the data movement operations that they

Population

− "GridFTP" data2 from Host2@Tier2
− "SCP" data1 from Host1@Tier2

Computation
− Produces output and temp files

Eviction
− Move output to hostN@Tier2

Job

Retention
− Retain select output data for
dependent jobs in the scratch cache

Inter−dependent Tasks

Figure 2: A single user job being parsed into popu-
lation, computation, retention, and eviction jobs.

already conduct with #Populate, #Evict, and #Retain di-
rectives to indicate the input and output files, their sources,
destinations and transfer protocols in Tier 2 storage. Be-
low is a sample PBS script with the directives to populate
Tier 1 from Tier 2 using the gridftp transfer protocol, to
evict from Tier 1 to Tier 2 using scp, and to retain an out-
put dataset for a certain duration and eventually evict it to
Tier 2.

#PBS -N SampleJob

#Populate gridftp://Tier2/home/user/InputFile1

-l user file://Tier1/scratch/user

#Populate gridftp://Tier2/home/user/InputFileN

-l user file://Tier1/scratch/user

mpirun -np 128 /myapp

#Evict file://Tier1/scratch/user/Output1

scp://Tier2/home/user/Output1 -l user

#Evict file://Tier1/scratch/user/OutputN

scp://Tier2/home/user/OutputN -l user

#Retain file://Tier1:/scratch/user/Output5

[-d HOURS] -evict scp://Tier2/home/user/Output5

4.2 Cache Operations
Instrumented scripts, such as the one shown above, are in-

put to a parser that is part of the cache management suite,
which identifies job files, their locations and longevity in the
Tier 1 cache. The parser separates the job script into “cache
population jobs”, “eviction jobs”, “retention jobs” and the
computation job with dependencies between them so that
the cache population occurs before computation commence-
ment and an eviction is only carried out after job completion
(Figure 2). To this end, we leverage work, such as [28], which
exploit modern resource manager (e.g., PBS [20], Moab [17])
primitives to setup job dependencies for sequencing multiple
jobs together. Our work is significantly different in that it
uses these dependencies and instrumentation to fundamen-
tally rethink scratch operations as a cache and not just au-
tomate data movement. These cache operation jobs (cache-
ops) could even be submitted to a separate “CacheOps”
queue instead of the standard batch queue used for com-
putational jobs. The queue could be setup to accept only
cache-ops that are size zero jobs that usually involve only
data movement and will be run on the center’s I/O nodes.



4.2.1 Populating the Cache

The cache management examines the submitted jobs to
determine when a particular job’s population operation should
be initiated. Populating the scratch cache is essentially
the staging of data from Tier 2 to Tier 1 storage. How-
ever, the staging of input data is not performed immedi-
ately after job submission as the job may have to wait in
the queue until compute resources become available. To this
end, the cache population operations perform “just-in-time”
(JIT) staging to bring the data in to coincide job startup.
Here, we borrow from similar work on data staging [4, 18]
that attempted to minimize the data exposure window of
an input dataset on the scratch space. In our context, the
exposure window (Ew) can be defined as the time spent by
the input dataset waiting for the job to commence and is,
Ew = TJobStartup − TStageIn, where TJobStartup is the esti-
mated job startup time and TStageIn is the time to stage the
input dataset. JIT staging makes use of an estimated job
startup time, from a batch queue prediction service (e.g.,
NWS [27]), as a data staging deadline and a dynamic, de-
centralized transfer scheme that is able to adapt to changing
conditions to deliver data in time. For the purpose of this
discussion, we assume that a transfer time is specified by
the user as part of the populate directive in the job script,
much like the “walltime” specified by users to denote the
duration of an application run. In the absence of explicit
transfer time specification, the cache management tool can
also perform on-the-fly bandwidth measurement to the Tier
2 storage to estimate transfer times.

Thus, the cache population jobs are submitted to the ap-
propriate queue in the resource manager and are launched as
late as possible so as to minimize Ew. During this time, the
computation job is submitted to the batch queue so it can
commence execution by TJobStartup, but with a dependency
on the input data population job.

4.2.2 Evicting from the Cache

Evicting the output data of a job is essentially offloading
it out to Tier 2 storage. The transfer protocol and authen-
tication to be used for this operation is provided as hints in
the #Evict directive in the job script. The eviction job is
configured to begin immediately after the completion of the
compute job. In addition to moving the result output data,
the user can also identify “temp” files of the application run
that are no longer needed. Temporary files from a petas-
cale application run can amount to several terabytes of data
themselves. In many cases, these are used for debug opera-
tions or checkpoints. In normal scratch operations, the user
moves his output and specific temp files manually, at some
point before the purge, and leaves it to the purge mecha-
nism to remove the rest of the temp files. Very few users
are courteous to scratch space administrators and perform
cleanup after their job completion. This obviously results
in huge files occupying the scratch space unnecessarily. The
purge mechanism will not delete them as they have just been
created. With our approach, the purging of the temp files
could now be specified in the eviction jobs. Consequently,
removing temporary files from a run can be performed hand-
in-hand with computation job completion. Finally, in order
to capture the case where not all output data and temp
files are explicitly specified by the user, the cache manage-
ment performs a periodic LRU sweep with a large temporal
window (similar to a purge, but with a significantly longer

duration). Thus, with this mechanism, the scratch is truly
used as a cache by removing the datasets that will not be
used again, at least not in the near future.

4.2.3 Dataset Retention

In order to retain datasets in the scratch beyond the life-
time of a job run, we have introduced the #Retain directive
in the job script. Using this directive, users can specify the
datasets, the duration for which they need to be retained and
their destination once evicted. In some cases, the output of
one job can be input to another and the dependent task
may not be scheduled until later. In such cases, it might be
cost effective to retain the dataset in the scratch instead of
evicting it to Tier 2 and populating it back into Tier 1 stor-
age. This needs to be balanced with scratch space usage,
particularly when there are many such co-dependent jobs.
To address this, we submit a retention job that touches the
datasets periodically to protect it from the purge mechanism
and eventually evicts it after the retention period expires. To
prevent users from artificially retaining datasets, we impose
the restriction that the duration cannot be longer than the
original scratch purge window. In essence, a retention job
is an Evict(n), where n is the duration the output dataset
spends on scratch (Tier 1) beyond job completion. The de-
generative case, Evict(0) is an immediate eviction of result
and temp files from the cache.

4.3 Discussion
A key observation of this work is that although individual

users specify their job-specific constraints, the overall cache
manager at the HPC center attempts to reconcile these with
other jobs for globally efficient scratch management, with
the aim to satisfy the three goals laid out in Section 2.1.

The cache manager analyzes all submitted jobs to arrive at
a decision on which population jobs to launch at what time.
The Tier 1 storage offers a finite amount of bandwidth to
Tier 2, which is governed by the HPC center’s connectivity.
Consequently, the population and eviction jobs compete for
the available bandwidth. It is conceivable that an eviction
can interfere with a population job that needs to be com-
pleted in time so the computation can start. One can argue
that evictions can wait as timely population of the input
data determines job turnaround time. Although not imple-
mented in the current prototype, one can imagine throttling
eviction jobs by assigning them a lower priority compared
to population jobs. On the flip side, delayed evictions result
in unnecessary space consumption. Therefore, any priori-
tization of evictions needs to be balanced against available
space.

In essence, our cache-based view of the scratch allows us
to perform such optimizations if need be: to throttle certain
parts of a workflow in order to achieve a higher degree of
center-wide serviceability. The extant approach of manual,
arbitrary data staging and offloading–or lack thereof–simply
does not allow any such possibility.

5. LOG-DRIVEN SIMULATION
We have implemented the techniques described so far for

managing the scratch space as a cache in a realistic simu-
lator. The simulator is driven by nearly three years of job
logs from the Jaguar supercomputer [3]. The logs contain
each job’s queue entry time, start time, predicted and ac-
tual wall time, the number of nodes needed for the job, and
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the memory resources used by each node. Using this infor-
mation the simulator models job queuing, scheduling, job
start time, job execution times, and provides data about
scratch space usage and the time it would take to stage and
offload the required data for a given job. This information
can then further be used to determine any delay in meeting
job scheduling deadlines.

Figure 3 shows the main components of the simulator,
namely, the job queue manager, the population, eviction,
and job runtime manager, the cache policy manager, and
the scratch manager. The job queue manager maintains all
of the data collected from the logs, and determines when
a job should begin the population process. The population,
eviction, and runtime manager performs either a normal or a
just-in-time staging and then schedules the job to run when
resources are available. It also handles offloading of data.
This module communicates with the cache policy manager
to allocate scratch space for the job. The cache policy man-
ager contains the implementations of the different caching
mechanisms and is capable of determining the workflow in-
formation for a job. This module determines what datasets
will be evicted out of the scratch space when the data needs
of incoming jobs cannot be met. Once a job’s data is se-
lected for removal, the eviction module offloads it to sec-
ondary storage, and the scratch module is queried to free
and allocate the associated space. In addition to modeling
the scratch space the scratch module also provides account-
ing and statistics such as the scratch space used and the
data read as well as other vital statistics.

We note that the total simulated scratch space capacity
has no bearing on the simulation as we measure scratch uti-
lization per hour, instead of cumulative utilization. Addi-
tionally, we also synthesize the job logs to introduce various
dependencies and for testing usage scenarios. This is not
an issue, because synthesizing job logs is a common practice
when realistic dependency logs are unavailable. Moreover,
the logs were randomly synthesized to be fair to all of the
candidate techniques and do not favor our workflow-aware
caching.

6. EVALUATION
In this section, we present an evaluation of our scratch as

a cache approach using the simulator described in Section 5,
driven by job-statistics logs collected over a period of three-
years on the Jaguar [3] supercomputer. Table 1 shows some
relevant characteristics of the logs.

In the following, we use our simulator to first justify the
need for treating the scratch space as a cache, followed by
an investigation of the various aspects of the caching model.
In all of our experiments, we used 1TB as scratch capacity.

Table 1: Statistics about the job logs used in this
study.

Duration 22764 Hrs
Number of jobs 80234

Job execution time 30 s to 120892 s, avg. 5835 s
Input data size 2.28 MB to 3714 GB, avg. 32.1 GB

6.1 Behavior of Traditional Caching
Mechanisms

The goal of this set of experiments is to justify treating
scratch space as a cache. For this purpose, we first study
how scratch utilization is affected under the normal purge
policies. Here, we set the purge period to seven days, and
monitored the amount of scratch space used per hour. Fig-
ure 4(a) shows the results. In the beginning, the rate of job
issue was not too high, so the periodic purge is able to keep
the space utilization lower. However, as the rate of job is-
sue increased, the scratch utilization became high. We note
that having constant utilization is not undesirable, however,
the after-the-fact purge will be unable to accommodate any
instantaneous increase in job issue rate.

Next, we tried two different caching algorithms to man-
age the scratch: the commonly used LRU and MRU algo-
rithms. We note that while LRU results in a steady increase
in scratch utilization with an average of 20.1% higher usage
per hour compared to 7-day Purge, MRU is able to drasti-
cally reduce scratch utilization per hour, with an average per
hour savings of 98.4% compared to 7-day Purge. Thus, this
result indicates that MRU would be a promising approach.

Additionally, from the timing of data read under the three
approaches, as shown in Figure 5, we observe that under
both 7-day Purge and MRU the data was staged much earlier
than under LRU. This provides a different perspective in
that the exposure window, Ew, under MRU is much greater
than that under LRU, and thus indicates that MRU would
be undesirable.

These results show that scratch utilization can be im-
proved using better management, however, simplistic algo-
rithms are unlikely to yield the desired objectives.

6.2 Effect of Workflow-Aware Caching on
Scratch Utilization

In this experiment, we first introduced job dependencies
between the traced logs. Specifically, we synthesized the logs
to introduce job dependencies of up to three jobs spread over
a period of a week. In total, 59.8% of the jobs in the logs
are chained into workflows. Then, we repeated the previ-
ous set of experiments with 7-day Purge, LRU, and MRU
and also utilized our workflow-aware caching algorithm to
study its affect. Figures 6 shows the data read, and Fig-
ure 7 shows the scratch utilization under our approach. We
observe that workflow-aware caching was able to reduce the
average scratch-space utilization per hour by 6.6% (e.g. 67.5
GB/Hr on average per Terabyte of storage) compared to
LRU. Moreover, MRU read the most amount of data. This
is because MRU blindly throws away the data as soon as
it has been used, without any regard to whether it will
be utilized again in the near future or not. In contrast,
workflow-aware caching reduced the amount of data trans-
ferred when compared to 7-day Purge, LRU, and MRU by
1.8%, 5.7%, and 20.4%, respectively. Reducing the amount
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(c) MRU.

Figure 4: Average scratch utilization over the duration of the logs under traditional management and simple
caching algorithms. All jobs are assumed to be independent.
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Figure 5: Data read under the studied approaches
over time.
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Figure 6: Data read under the studied approaches
over time, when 59.8% of the jobs have workflow
dependencies.
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(d) Workflow-Aware Caching.

Figure 7: Average scratch utilization over the duration of the logs under traditional management and simple
caching algorithms. 59.8% of the jobs are chained in dependent workflows.

Table 2: Average expansion factor observed for the
studied caching polices.

7-day Purge LRU MRU Workflow
Queue Entry 167289 2.54 2.59 2.54
Stage in Time 3.86 1.04 1.05 1.04

of data transferred also implies a lower probability of miss-
ing job scheduling deadlines due to smaller times required
to bring all the necessary data into the scratch.

These results stress the need and the importance of inte-
grating workflow information into scratch management.

6.3 Impact on Job Scheduling & Performance
We have shown that workflow-aware scratch management

can improve space utilization and reduce data transfer re-
quirements. In this set of experiments, we study the impact
of the reduced data transfer on meeting job scheduling dead-
lines. In this context, system designers and funding agencies
(e.g., US DOD, NSF, DOE, etc.) are adopting performance
specification metrics such as expansion factor [13, 3] (EF),
defined as the ratio (wall time + wait time)/wall time av-
eraged over all jobs (the closer to 1, the better). Therefore,
we use expansion factor in our study.

Table 2 shows the EF for the studied approaches. First, we
examined the queue entry time for determining the wait time

in calculating the EF. Here, we observe that the traditional
purge may lead to extremely high average EF as over time,
the wait time accumulates as jobs are delayed as their data
is staged in. Treating the scratch as a cache, reduces the EF
to more acceptable values.

Next, we determined the wait time for our calculation
using the time when staging for a job-associated data is ini-
tiated. This approach removes the accumulating delay af-
fect and presents a more realistic EF. However, once again
we observe that the traditional purge-based approach is far
from ideal with 286.0% overhead, where as workflow-aware
caching results in only 4.0% overhead.

Also note that, from these results it would seem that LRU
is comparable to workflow-aware caching. However, we be-
lieve this to be an artifact of our job log synthesis when
introducing workflow dependencies, and is not an argument
for LRU-based caching being a suitable option in general for
scratch management.

6.4 Effect of Types of Tier 2 Storage
In Section 3, we have discussed various storage devices

that can act as Tier 2 storage for our scratch cache. In
our next set of experiments, we study the affect of different
types of Tier 2 on EF. Here, we consider our workflow-aware
caching method, when the average Tier 2 Bandwidth is 10
Gbps, 250 Mbps, and 50 Mbps. We synthesized logs by ran-
domly assigning a Tier 2 bandwidth to each job entry in the
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Figure 8: The distribution of EF as the aver-
age bandwidth to Tier 2 storage varies. 10 Gbps
achieves a 1.04 average EF, while 250 Mbps achieves
2.09 and 50 Mbps achieves 6.51.
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Figure 9: Distribution of observed exposure window
under 7-day Purge and workflow-aware caching.

original log to denote input datasets originating from dis-
parate data sources. Consequently, this results in a diverse
staging in time.

Figure 8 shows the cumulative distribution of EFs under
various Tier 2 average bandwidths. Even when all Tier 2
storage is capable of providing a low bandwidth of only 50
Mbps, 71.5% of the jobs finish with an EF less than 1.5 and
an average expansion factor across all jobs of 6.51. Both 10
Gbps and 250 Mbps provide significantly better average EFs
of 1.04 and 2.09, respectively.

6.5 Impact on Exposure Window
In the next experiment, we study how managing the scratch

storage as a cache can help reduce the data exposure win-
dow, Ew. Figure 9 shows the distribution of exposure win-
dow under the 7-day Purge policy and our workflow-aware
caching. It can be observed that workflow-aware caching is
able to significantly reduce the exposure window, for 30.7%
of the jobs, workflow-aware caching was effectively able to
reduce Ew to zero, and for the remaining jobs it reduced Ew

by 64.2%, i.e., 75.2% reduction on average across all jobs.
Moreover, Ew was reduced by at least a factor of 10 for
48.3% of the jobs. Thus, workflow-aware caching is an effec-

tive means for reducing exposure of staged data to scratch
failures.

In summary, the presented workflow-aware caching pro-
vides effective means to reduce average scratch utilization,
reduces data that needs to be transferred per job, and al-
lows for managing the scratch space in a globally optimal
manner.

7. RELATED WORK
Several previous efforts address the coordination of data

and computation activities in HPC centers. These range
from simple dependency management in PBS [4] and Moab [17]
to treating data activities as data jobs [14, 28]. However,
our approach is a paradigm shift in how scratch storage
is viewed and uses many of the aforementioned to realize
a cache-based approach to HPC scratch management. In
addition to synchronizing data movement using a suite of
cache management tools, our work also addresses data re-
tention, which only a workflow-aware caching scheme can
accomplish.

Batch Aware Distributed File System (BAD-FS) [7] con-
structs a file system for large, I/O intensive batch jobs on
remote clusters. BAD-FS addresses the coordination of in-
put data and computation by exposing distributed file sys-
tem decisions to an external workload-aware scheduler. We
attempt to inherently improve the job workflow and cen-
ter operations without creating a new file system, but by
viewing the scratch as a cache.

Data staging and offloading tools such as Kangaroo [24],
IBP [22] and other timely delivery tools [18, 19] provide
standalone infrastructures to move data in and out of the
HPC center. These tools can be used in conjunction with
our cache population and eviction mechanisms.

A mature body of work, comprising of simple to advanced
pattern-based approaches, exists for data caching [16, 8, 21,
12] and prefetching [21, 26, 6] to improve I/O performance
and bridge the gap between the CPU and disk access speeds.
In this paper, we exploit and leverage existing algorithms to
better manage the scratch space.

Scientific data caches [25, 15] provide techniques to accel-
erate data accesses in the HPC center by offering dataset
caching. However, these systems are not workflow-aware
and perform simple LRU based cache replacement.

8. CONCLUSION
In this paper, we have argued for the need for treating

the precious HPC center scratch space as a specialized cache
that manages the inflow and outflow of necessary job data in
a workflow-aware integrated fashion. We have presented the
design and evaluation of a workflow-aware caching approach,
which provides a 6.6% improvement in average scratch uti-
lized per hour compared to an LRU based caching mech-
anism, and reduces the amount of data read on average
by 9.3% compared to both a traditional purge and other
caching approaches. Furthermore, the approach results in
an improvement of 282.0%, on average, in the expansion
factor – a popular metric to measure a center’s serviceabil-
ity – compared to the currently-used purging. Additionally,
the presented approach works equally well for any kind of
Tier 2 storage available to the users. Thus, our solution is
able to reconcile several key factors such as reducing the du-
ration of scratch space consumption, adapting to volatility,



and delivering the data on time. Finally, we note that the
fundamental contribution of this work is the paradigm shift
in managing the scratch space comprehensively and not as
an after thought: this provides opportunities for HPC cen-
ter managers to design customized scratch management as
needed for their installations.
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